Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals
نویسندگان
چکیده
In this paper, a strategy is proposed for alternative computations of the residual vectors in Krylov subspace methods, which improves the agreement of the computed residuals and the true residuals to the level of O(u)‖A‖‖x‖. Building on earlier ideas on residual replacement and on insights in the finite precision behavior of the Krylov subspace methods, computable error bounds are derived for iterations that involve occasionally replacing the computed residuals by the true residuals, and they are used to monitor the deviation of the two residuals and hence to select residual replacement steps, so that the recurrence relations for the computed residuals, which control the convergence of the method, are perturbed within safe bounds. Numerical examples are presented to demonstrate the effectiveness of this new residual replacement scheme.
منابع مشابه
Residual Replacement Strategies for Krylov
In this paper, a strategy is proposed for alternative computations of the residual vectors in Krylov subspace methods, which improves the agreement of the computed residuals and the true residuals to the level of O(u)kAkkxk. Building on earlier ideas on residual replacement and on insights in the nite precision behaviour of the Krylov subspace methods, computable error bounds are derived for it...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملA Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of Communication- Avoiding Krylov Subspace Methods
The behavior of conventional Krylov Subspace Methods (KSMs) in nite precision arithmetic is a well-studied problem. The nite precision Lanczos process, which drives convergence of these methods, can lead to a signi cant deviation between the recursively computed residual and the true residual, b − Ax, decreasing the maximum attainable accuracy of the solution. Van der Vorst and Ye [24] have adv...
متن کاملA Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods
Recent results have demonstrated the performance benefits of communicationavoiding Krylov subspace methods, variants which use blocking strategies to perform O(s) computation steps of the algorithm for each communication step. This allows an O(s) reduction in total communication cost, which can lead to significant speedups on modern computer architectures. Despite potential performance benefits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 2000